Motor driver
There are many kinds of motor drivers:
- servo motor controller
- stepper motor controller
- DC motor controller ("brushed")
- AC motor controller ("brushless")
- ... (todo: fill in the other kinds) ...
A DC motor controller that is 'reversable' generally uses an 'H bridge'. This 'H-bridge' uses four output drivers in a configuration that resembles an H where the load is the cross bar in the middle. The lines on either side of the load (the downward strokes in the H) represent a series connection of a pull-up driver and a pull-down driver. This allows each terminal of the load to be connected to either the positive supply rail, or the negative supply rail. This allows a positive, negative or zero voltage difference across the load. This load voltage is then utilised to provide the desired control required of the motor. The various combinations can give a 'forwards' torque on a DC motor, a 'backwards' torque on the same motor, can allow the motor to free-wheel (without any applied torque) or can provide a locking of the motor such that it resists any attempt to rotate it.
A single phase AC motor is generally driven in the same way as a DC motor, however instead of operating the motor drive as a constant DC voltage (in either the 'forward' or 'reverse' direction) the AC motor is driven by an approximation to a sinewave. This approximation is created using the H bridge and driving it with a PWM input such that both the positive and negative voltage periods are the same. This is normally acheived either using a sawtooth waveform compared against a sine wave reference, or is done using a lookup table in a microcontroller.
A similar method is used to drive multiphase (3-phase) AC motors, however instead of just using an H bridge, only a half H bridge is used per phase (3 half-bridges). Each phases half bridge is then driven in the same manner as for the single phase motor, with a phase difference between the phases as appropriate.
Most stepper motor controllers uses 2 independent H bridges (4 half-bridges) for the 2 independent coils of a stepper motor. Each possible state (one bridge driving current one way, the other way, or free-floating) of both bridges gives 4 "full steps", 4 "half-steps" between the full steps. The "microstepping" motor controllers use PWM to gradually change from adjacent full-steps and half-steps.
((fill in more details here...))
current sense
Often people want to measure the current going through the motor.
There are 3(?) basic techniques:
- low-side current shunt
- high-side current shunt
- mag
1000 netic field sense
- ... (any others I missed?)
Low-side is (electrically) the simplest.
For smaller motors, the current is usually measured by running the current through a shunt resistor, and measuring the voltage across the resistor.
In situations where low-side sensing is difficult ( automobile electronics bonded to the "GND" car frame; other systems where it is inconvenient to put a resistor on the "lo" power wire), we turn to high-side sensing.
side current sense Newark: high side current sense; [http://www.digikey.com/scripts/DkSearch/dksus.dll?KeywordSearch