Techniques

From OpenCircuits
Jump to navigation Jump to search

There are a wide variety of techniques used in electronics.


Printed circuit board design/fabrication

Overview

Software Design

See Software Design Tools below.

Step by Step by using Software Design Tool

  • make sure the dimension and shape of PCB
  • make sure the size and location of Via for PCB stand
  • Make sure each components footprint.
  • each components are placed on suitable place by put on a hardcopy of simulation PCB
  • All components get enough clearance between them.
  • Silkscreen layout is confirmed.
  • PCB is drawn.
  • silkscreen adding the following:
    • version no.
    • organization name
    • board name
  • Netlist is ran and got a no error result.
  • DRC is ran and got a no error result.
  • Overall is checked.
  • generate Gerber and send to PCB Manufacturers.

Manual Design

Somepeople do this with layout on clear film or by directly drawing on a circuit board, of even by scratching, grinding.... For now let them google this.

Homebrew fabrication

Before exploring these techniques, you should understand your options with regard to services such as BatchPCB.com, ExpressPCB.com and PCB123.com. Being able to have several boards fabbed in 2 days for $59 (for example) makes it harder to justify the hassle of etching your own boards at home.

Commercial PCB fabrication

Best Practices for PCB Layout

Theory

  • Provide the easiest path (lowest impedance) for current to flow
    • Return current tends to flow directly under signal trace (for PCB having ground plane)
    • Inductance increases with length of traces
    • Inductance increases with the area enclosed by signal trace and ground
  • Prevent digital currents from contaminating analog currents
  • Decouple high speed components
  • Use ground loop avoidance tehniques

Design

  • Partition PCB into "analog stuff" and "digital stuff".
  • No digital signal traces should cross over analog ground, and vice versa
  • For components having both analog and digital signals (e.g. ADC), orientate components so that the analog signal traces goes only over the analog ground plane, and digital signal traces goes only over the digital ground plane
  • AGND and DGND of ADC must have a small impedance (i.e. separated by short distance)
  • Add decoupling capacitors close to Vcc and DGND of ICs
  • Add ferrite beads and capacitors (PI-filter) to power rail for low-pass filtering (reduce ripples).

Routing

  • Place fixed components first (components location that cannot be changed, e.g. connectors, buttons, etc)
  • Make installing parts onto the PCB fast:
    • Fastest: No through-hole parts. All surface-mount parts on the bottom side.
    • Next-fastest: All through-hole parts on the top side. All surface-mount parts on the bottom side.
  • Separate components into groups
    • Digital signals only
    • Analog signals only
    • Digital and analog (Mixed) signals
    • High current devices (e.g. led backlight for LCD/buzzer)
  • Do not partition ground into analog and digital planes.
  • Orientate components that have mixed signals according to the orientation of the ground planes, and straddle components over DGND and AGND
  • Place digital only components over DGND
  • Place analog only components over AGND
Grounding Example for PCB
  • Decoupling capacitors should be as close to the ICs as possible
              Vcc
               | | | | |
             +-----------+
 -------+-+--|-+---------|-------- Vcc
        |C|  |    IC     |
 -------+-+--|---------+-|-------- GND
             +-----------+
               | | | | |
                       GND
  • Lay critical (noise-sensitive) traces first (e.g. crystal, analog signals)
    • As short as possible
    • Use 45o turnings instead of 90o
  • Paired signal traces (e.g. TX+, TX- in ethernet chips) should run parallel along each other
    TX+ -----\
    TX- ----\ \
             \ \
              \ \
               \ \
                \ \------------ TX+
                 \------------- TX-

References

Circuit construction (Prototyping - Other than custom PCB)

"Construction Ideas" has nice photographs of the above circuit construction techniques. ["Effects Building Techniques" by R.G. Keen 1999 reviews, compares, and contrasts these techniques for circuit construction -- also a few more.

Soldering techniques

(Have you seen this CNC solder paste/pick n place ?) Hackaday has lots of other similar articles: search hackaday for "solder paste"

Hardware tools

A directory of hardware tools that you may find useful.

software tools

Software design tools

A directory of software tools that you may find useful.


PC-Microcontroller Communications

Discussion of the various methods to connect a microcontroller or embedded system to a PC...

Embedded System Programming and Testing

To add to the confusion programming in embedded system can mean a person writing a program or a device called a programmer "burning" a program into a chip. This section is for the "burning" meaning of programming.

  • Many systems use JTAG for programming and testing. (Such as Atmel AVR embedded systems]).
  • Other systems use some other kind of in-circuit programming.
  • Some people use bootloaders to make re-programming a little quicker.

-- not sure that this next one is not misplaced ? -- We're talking about "programming and testing" ? What else do you use to test op-amp circuits?

Humans writing a program almost always do it in a language. Here is a section that discusses some of these languages: Programming Languages

driving motors

See Stepper Motor Tester and motor driver.

Enclosure

  • The Earth Signal should short to whole metal Case
  • Digital/Analog GND should separate to this Earth Signal, and should connect a Y-cap. to filter the noise between them.
  • Attention: do not place near between Earth Signal and Digital/Analog GND, otherwise some spark come out, and affect your whole system.
  • See enclosures.

Misc Tips Tricks

Misc Tips Tricks


Further Reading

Environmental Issues

see better for the environment.