Difference between revisions of "Motor driver"

From OpenCircuits
Jump to navigation Jump to search
(→‎external links: "circuit for changing direction with a DC motor")
(lidelalmo)
Line 1: Line 1:
 +
cnaacdomdo
 
== kinds of motor drivers ==
 
== kinds of motor drivers ==
  
Line 87: Line 88:
  
 
Using the A3977 microstepping driver chip from Allegro:
 
Using the A3977 microstepping driver chip from Allegro:
* [http://www.neufeld.newton.ks.us/electronics/?p=140 "Keith’s Stepper Motor Controller Board"]
+
* [http://www.neufeld.newton.ks.us/electronics/?p=140 "Keith’s Stepper Motor Controller Board"]
 
* [http://www.thsengineering.com/projects/a3977proto/a3977proto.html "A3977 Microstepping Stepper Motor Driver Prototype PCB"] / [http://www.thsengineering.com/products/thstep25/thstep25.html THSTEP25 Microstepping Stepper Motor Driver] (sells bare PCB board; schematic on web site)
 
* [http://www.thsengineering.com/projects/a3977proto/a3977proto.html "A3977 Microstepping Stepper Motor Driver Prototype PCB"] / [http://www.thsengineering.com/products/thstep25/thstep25.html THSTEP25 Microstepping Stepper Motor Driver] (sells bare PCB board; schematic on web site)
 
* [http://www.students.tut.fi/~kontkant/a3977.php.html "Tero's A3977 stepper driver"] (schematics and layout files)
 
* [http://www.students.tut.fi/~kontkant/a3977.php.html "Tero's A3977 stepper driver"] (schematics and layout files)

Revision as of 07:52, 19 December 2008

cnaacdomdo

kinds of motor drivers

There are many kinds of motor drivers:

  • servo motor controller
  • stepper motor controller
  • DC motor controller ("brushed")
  • AC motor controller ("brushless")
  • ... (todo: fill in the other kinds) ...

A DC motor controller that is 'reversible' generally uses an 'H bridge'. This 'H-bridge' uses four output drivers in a configuration that resembles an H where the load is the cross bar in the middle. The lines on either side of the load (the downward strokes in the H) represent a series connection of a pull-up driver and a pull-down driver. This allows each terminal of the load to be connected to either the positive supply rail, or the negative supply rail. This allows a positive, negative or zero voltage difference across the load. This load voltage is then utilized to provide the desired control required of the motor. The various combinations can give a 'forwards' torque on a DC motor, a 'backwards' torque on the same motor, can allow the motor to free-wheel (without any applied torque) or can provide a locking of the motor such that it resists any attempt to rotate it.

A single phase AC motor is generally driven in the same way as a DC motor, however instead of operating the motor drive as a constant DC voltage (in either the 'forward' or 'reverse' direction) the AC motor is driven by an approximation to a sinewave. This approximation is created using the H bridge and driving it with a PWM input such that both the positive and negative voltage periods are the same. This is normally achieved either using a sawtooth waveform compared against a sine wave reference, or is done using a lookup table in a microcontroller.

A similar method is used to drive multiphase (3-phase) AC motors, however instead of just using an H bridge, only a half H bridge is used per phase (3 half-bridges). Each phases half bridge is then driven in the same manner as for the single phase motor, with a phase difference between the phases as appropriate.

Most stepper motor controllers uses 2 independent H bridges (4 half-bridges) for the 2 independent coils of a stepper motor. Each possible state (one bridge driving current one way, the other way, or free-floating) of both bridges gives 4 "full steps", 4 "half-steps" between the full steps. The "microstepping" motor controllers use PWM to gradually change in a sine-wave-like manner from adjacent full-steps and half-steps.

((fill in more details here...))

noise control

Many motors make sparks when the brushes make or break contact. This causes causes lots of electrical noise ("brush noise"). Your TV-watching neighbors won't be happy if you allow this noise to leak out.

"Sparks emit RF energy from DC to daylight as I was once told by an EMC expert." -- HydraRaptor: "DC to daylight". More details: HydraRaptor: "GM3 motor suppressor"


current sense

Often people want to measure the current going through the motor.

See current sense for several different techniques.

tolerance against software bugs

Some motor controller circuits are such that, if the software accidentally sets the "wrong" pins hi or lo, you get a short circuit through the output drivers. This will generally cause a high current to flow, due to the low on state resistance of the output drivers, which may destroy other electronic components before finally blowing the supply fuse.

Other motor controller circuits are such that, if the software accidentally sets the "wrong" pins hi or lo, the worst that could happen is the motor spins the wrong way. These circuits are designed so that, no matter what the inputs, it is impossible to get a short circuit through the output drivers. Between "one branch on" and "the other branch on", there is a minimum "blanking time" which has "both branches off". This guarantees that we never have "both branches on" (short circuit).

Guess which type of design I prefer?

external links

A random collection of semi-related links (please prune out the irrelevant ones):


A3977

Using the A3977 microstepping driver chip from Allegro:

astronomy

astronomy telescopes use motor drivers:

robots

Robots use motor drivers.

self-balancing personal transportation systems

Main Article: vehicle

Self-balancing personal transportation systems use motor drivers:


generator

(This doesn't have much to do with motor drivers -- is there a better page for electric power generation tips?)

further reading