Difference between revisions of "Minimig Board v1.0 issues"
Jump to navigation
Jump to search
Line 141: | Line 141: | ||
:/VSYNC = high (scart RGB enable) | :/VSYNC = high (scart RGB enable) | ||
:/HSYNC = composite sync | :/HSYNC = composite sync | ||
+ | |||
+ | == FYI: FPGA connections == | ||
+ | [[Minimig Board v1.0 FPGA connections|Board v1.0 FPGA connections]] | ||
== FYI: Possible SD/MMC incompability == | == FYI: Possible SD/MMC incompability == |
Revision as of 17:33, 23 August 2007
Contents
- 1 FYI: Schematics
- 2 Power
- 3 Issue: FPGA SPI_DOUT
- 4 Issue: SD/MMC
- 5 Issue: Possible back emf on audio output?
- 6 Issue: X1,X2 operating mode?
- 7 Issue: Video D/A inconsistency
- 8 Issue: SRAM
- 9 RS232 pin header wiring
- 10 Optimization: Clock generation
- 11 Optimization: MCU & FPGA TxD sharing
- 12 Optimization: Use cdrom-soundcard cable?
- 13 FYI: Power optimisation
- 14 FYI: CPU A0
- 15 FYI: SRAM UB/LB
- 16 FYI: SD/MMC pcb layout pins
- 17 FYI: Fpga pin ordering
- 18 FYI: FPGA config voltage
- 19 FYI: keyboard + mouse wire sharing
- 20 FYI: Port overvoltage protection
- 21 FYI: BAV99 is 3-pin
- 22 FYI: 15/31kHz missing reference
- 23 FYI: Component sizes
- 24 FYI: C37 value
- 25 FYI: Video setup
- 26 FYI: FPGA connections
- 27 FYI: Possible SD/MMC incompability
- 28 FYI: Xilinx Place & Route limitation
FYI: Schematics
Schematics: Minimig Board v1.0 schematic
Power
- Suggestion: Include a +5V regulator on board OR use an ATX-style powerplug if you go Mini-ITX. The +5V regulator should be capable of providing about 1A to safely power all peripherals one might attach.
- FYI: Peak & average powerconsumption of the minimig v1 ..?
- From what I have seen the power consumption is pretty constant. All boards I've built so far consume about 100mA (excluding keyboard/mouse).
- FYI: Any power or grounding issues?
- I did use a "local-plane" setup. I have set most IO's to slow slewrates and drive currents.
Issue: FPGA SPI_DOUT
- Hardwire the patch needed to get the current board to run. Alternatively, you can also swap pin 81 (IO_L31_4/DOUT/BUSY=SPI_DOUT) and pin 79 (IO_L32P_4/GCLK0=RAM A15) on the FPGA. This way you still have four user-IOs left. You do need to change the .UCF file though and recompile the core.
- PATCH needed to get rev 1 board working:
- Disconnect net SPI_DOUT from pin 81 (IO_L31_4/DOUT/BUSY) of FPGA.
- Connect net SPI_DOUT to pin 19 (IO_L23N_7) of FPGA (net USER3).
- Reason:
Issue: SD/MMC
- SPI_DOUT from SD-Card via 1k resistor and FPGA (pin81) conflicts ..?
- A gate would be better. During normal operation, the SPI out of the MMC card is tristated by disabling the MMC, the same goes at the FPGA side (it's a tristate port). This way, they can share the SPI bus.
- The MMC card interface has a resistor based clock gate circuit around R50,R51. This should be replaced with a proper (single) gate "OR" chip. The margins on this signal are pretty tight on the current board. Also, R49 should be 0 ohm ideally to avoid problems when upgrading the PIC to a newer PIC18LF2620 or something similair. Margins are tight on that signal too atm.
- Footnote: R49 sits between SD/MMC pin7 "D0" and SPI_DOUT (Picture).
- Improvement: pin11 SW#2 (write protect) and pin12 SW#3 (no card) maybe should be utilised to avoid accidential writes and interference with spi transfers ..?
- (SW#2=open => write protect, SW#3=open => no card present)
Issue: Possible back emf on audio output?
- Headphones may cause back-emf? (maybe supposed to be used as line-out only?)
Issue: X1,X2 operating mode?
- Crystals X1 and X2 is operating in parallel or serial mode ?
Issue: Video D/A inconsistency
- Current Video D/A use non linear resistor ladder values.
- Current values: 4000Ω 2000Ω 1000Ω 560Ω
- Suggested values: 4220Ω 2100Ω 1050Ω 523Ω
- Video D/A resistor ladder maths & simulations
Issue: SRAM
- The original SRAM used M68AW512M is no longer available
- Replacing the two 512k x 16 with one 1M x 16 bit ram will do away with one chip and free RAM_SEL1
RS232 pin header wiring
- Connection, RS232:
Optimization: Clock generation
- You could consider using a single 20MHz oscillator and figure out how to program the DCM to generator the proper clocks, this would spare a crystal.
Optimization: MCU & FPGA TxD sharing
- MCU(pic18) & FPGA TxD via AND-gate to rid of one jumper:
- Yes, no problem. However, all debug output of the PIC has to be disabled as not to interfer with the FPGA serial output.
Optimization: Use cdrom-soundcard cable?
- Connection, Audio:
- internal x86-pc cdrom -> soundcard analogue audio pinout
- Voltage level: (3.3V/(560ohm + 560ohm + 32ohm))*32 ohm*1000 = 91,7mV
FYI: Power optimisation
- +1.25V and +2.5V can be hooked from +3.3V to save power ?
- No gain
- Why is R42 present, it's just sitting between +1,25V and GND?
- Provides a minimum load for the LM1117.
FYI: CPU A0
- Why is the CPU pin 19 (A0) not connected to anything ..?
- The 68SEC000 is run in 16bit (selected by pin 8 (MODE=Vcc) ) mode, which means that only even addresses are used, hence the lsb address select is not needed.
- The addressing of byte wide memory addresses is done using the LDS/UDS strobes.
FYI: SRAM UB/LB
- Why does the SRAM use /UB and /LB when data is 16-bit anyway?
- jkonstan 070801:
- The UB & LB strobes on the SRAM are due to data bus addressing needed for the 68K cpu. 68K CPU has UDS* strobe for upper byte lane D15-D8 access, and 68K CPU has LDS* strobe for lower byte lane D7-D0 access. When 68K does a read, D15-D0 can be accessed as a word with 68K reading what it requires off of its Databus; however, a write access on a 68K CPU requires the byte lane be qualified. When UDS* active on a write cycle, UB* on SRAM must be active. When LDS* active on a write cycle, LB* on SRAM must be active.
D15........D8 D7........D0 Byte 0= Even Byte 1= Odd => (Word 0) /UDS /LDS etc..
- Ie 68k writes are byte wide.
FYI: SD/MMC pcb layout pins
- The SD-MMC slot has a 12-pin wide connection to pcb.
- CD/D3, CMD, GND, VDD, CLOCK, GND, D0, D1, D2, SW#1, SW#2, SW#3
- SW#1="gnd", SW#2=open=>write protect, SW#3=open=>no card present
FYI: Fpga pin ordering
- Why is address/data pins to ram/cpu spread around despite dedicated board?
- Became such way to ease the PCB layout.
- Why FPGA I/O pins aren't in numerical order?
- Was simple when starting out.
FYI: FPGA config voltage
- FPGA configuration mode select M1,M0,M2 (pin 54, 55, 56) pins use VccAUX at +2.5V
FYI: keyboard + mouse wire sharing
- Keyboard and mouse can share connection?
- Won't save data lines.
FYI: Port overvoltage protection
- Over/under voltage protection for keyboard or mouse port?
- It is a minimal design. The Spartan has built-in ESD protection that this design relies on. :However, monitors and TV's are notorious for blowing up video ports so extra protection has been added there!
FYI: BAV99 is 3-pin
- BAV99 diodes in the schematic is 3-pin not 2-pin as can be thought.
FYI: 15/31kHz missing reference
- 15/31kHz selector is missing reference designation.
FYI: Component sizes
- Component size is missing.
- Seems resistor size 0805 or 0603 will fit solder pads. See also Wikipedia: Package sizes
FYI: C37 value
- Value of C37 100uF/6.3V?
- Yes
FYI: Video setup
- Video, in 15kHz mode:
- /VSYNC = high (scart RGB enable)
- /HSYNC = composite sync
FYI: FPGA connections
FYI: Possible SD/MMC incompability
- Some (esp Sandisk.com) SD/MMC cards aren't standards compliant! see 1541-III FAQ
FYI: Xilinx Place & Route limitation
Xilinx ISE Webpack device support
- Free version supports Spartan3 XC3S50 - XC3S1500